When applying galvanic coatings, soluble salts of heavy metals such as iron, copper, nickel, zinc, cadmium, chromium and other metals are used, toxic cations enter the water, with subsequent migration to the biosphere. To date, many methods have been developed for cleaning galvanic sewage, which cannot be considered sufficiently effective. The joint sorption of divalent cations of copper, nickel and cadmium from concentrated aqueous solutions was investigated. Calculation and experimental methods were used to determine the separation conditions of the bivalent ion systems that differed and close in sorption properties on the aminophosphonic polyampholyte Purolite S950 in a natrium form. It is shown that the cadmium (II) cations can be isolated from solutions containing copper (II) or nickel (II) cations even at the height of the sorption layer of 0.13 m due to the difference in the defining characteristics of the cations. This layer height can be used not only in a chromatographic column, but also in a concentrating cartridge. Separation of the copper (II) and nickel (II) close to the sorption properties requires an absorbing layer of 0.76 m, which can only be used in a chromatographic column, but not for a concentrating cartridge. In this paper, the degrees of ion separation in various sorption conditions are calculated. The applicability of the conductometric method for controlling the ion exchange process is shown not only when the free cations are isolated from aqueous solutions but also bound to complexes.