The removal of three antibiotics i.e., metronidazole (MNZ), ciprofloxacin (CIP) and tetracycline (TET), from aqueous system via TiO2 photocatalysis under UV-A light was investigated. Photocatalyst(s) were prepared using sol-gel method under different calcination temperatures (400–800 °C) and water-alcohol ratio. The spherical shaped catalyst (mean particle size ∼ 61 nm) was characterized via FTIR, XRD, BET, SEM, Raman, XPS, UV-DRS, and Fluorometry, and point of zero charge was also determined (pHPZC ∼ 6.6). Batch photo-catalytic degradation studies have shown complete degradation of MNZ, CIP and TET after 50, 75 and 20 min with a TOC removal of 37%, 44% and 31%, respectively. The activity of sol-gel prepared TiO2 was comparatively higher than commercially available pure anatase TiO2 nanoparticles due to lesser mean particle size. The ratio of water to alcohol in the preparation of TiO2 catalyst was found to have significant effect on antibiotic removal. Moreover, persulfate (PS) addition of 0.1 g/L amplified the pseudo-first-order removal-rate constant by 2.75, 3.3 and 1.6 times for MNZ, CIP and TET, respectively. The higher initial pH values (8 and 10) have shown the best removal efficiency for all antibiotics. Subsequently, central composite design (CCD) experiments were conducted under multi-antibiotic conditions. Near complete removal of all antibiotics were observed within 120 min. Scavenging studies revealed that hydroxyl and superoxide radicals play major roles in photo-catalytic degradation of MNZ, CIP and TET. During photocatalysis, MNZ degradation was initiated by hydroxylation reaction, CIP by piperazine ring opening by hydroxyl attack and TET by multiple hydroxylation process. Overall, TiO2 showed good efficiency at degrading multiple antibiotics and has the potential for practical application on a larger scale.
Read full abstract