Control valves have an important function in the warship power system. In engineering practice, the fluid oscillation inside the control valve causes the additional load to the valve actuator. When the additional load is added to the original load of the valve, it is possible that the required driving force (or driving moment) of the valve is greater than the maximum force (or moment) output by the actuator, which may cause the abnormal stop of the actuator. Conventionally, the interaction effect of the valve mechanical and electric components on the valve chamber’s flow field cannot be considered in computational fluid dynamics (CFD) simulations, so the oscillating fluid loads cannot be accurately obtained. In order to solve this problem, the mechanical-electric-fluid integrated valve model, using the FLUENT and AMESim cosimulation method, was developed to embody the interaction effect between the components of each part of the control valve and exhibit the fluid oscillation during the operating process of the control valve. Compared with the pure software simulations, the unsteady flow characteristics and dynamic response of the actuator were synchronously obtained in this study, which accurately captured the sudden fluid loads required for further compensation. At the same time, the differences in performance of different valve plugs were compared. The stability time of the valve plug and oscillation amplitude of the unstable fluid loads were distinct for control valves with different flow characteristics. The results can aid in understanding the instability mechanism of the fluid load in the control valve better, which provides the calculation basis for compensating the additional load on the valve plug and improve the reliability of the control valve.
Read full abstract