Spatial optical analog differentiation allows ultrahigh-speed and low-power-consumption of image processing, as well as label-free imaging of transparent biological objects. Optical analog differentiation with broadband and incoherent sources is appealing for its multi-channels and multi-task information processing, as well as the high-quality differentiation imaging. Currently, broadband and incoherent optical differentiation is still challenging. Here, a compact and broadband achromatic optical spatial differentiator is demonstrated based on the intrinsic spin–orbit coupling in a natural thin crystal. By inserting a uniaxial crystal just before the camera of a conventional microscope, the spin to orbit conversion will embed an optical vortex to the image field and make a second-order topological spatial differentiation to the field, thus an isotropic differential image will be captured by the camera. The wavelength-independent property of the intrinsic spin–orbit coupling effect allows us to achieve broadband analog computing and achromatic spatial differentiation imaging. With this differentiation imaging method, both amplitude and pure phase objects are detected with high contrast. Transparent living cells and biological tissues are imaged with their edge contours and intracellular details protruded in the edge detection mode and edge enhancement mode, respectively. These findings pave the way for optical analog computing with broadband incoherent light sources and concurrently drive the advancement of high-performance and cost-effective phase contrast imaging.
Read full abstract