Abstract

Ghost imaging is a promising technique for shape reconstruction using two spatially correlated beams: one beam interacts with a target and is collected with a bucket detector, and the other beam is measured with a pixelated detector. However, orthodox ghost imaging always provides unsatisfactory results for unstained samples, phase objects, or highly transparent objects. Here we present a dark-field ghost imaging technique that can work well for these "bad" targets. The only difference from orthodox ghost imaging is that the bucket signals rule out the target's unscattered beam. As experimental proof, we demonstrate images of fine copper wires, quartz fibers, scratched and damaged glass plates, a pure phase object, and biospecimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call