Remediation-focused predictive tools for polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) rely on transformation models to evaluate the reduction in total contaminant load and toxic equivalency (TEQ). In this study, a comprehensive model predicting the profiles of PCDD/F congeners and the associated TEQs was developed. The model employs first-order kinetics to describe the transformation of 256 reactions for 75 PCDD congeners and 421 reactions for 135 PCDF congeners. It integrates the growth of anaerobic microbial guilds using Monod kinetics on hydrogen release compounds and stoichiometric growth for Dehalococcoides sp. The effects of temperature, salinity, pH, and availability of vitamin B12 (a cofactor) were also integrated. The PCDD/F congeners model was used to extract the first-order dechlorination rate constants from a number of pure culture and mixed microbial microcosm studies. Simulations for the transformation of PCDD/F congeners at concentrations representative of the Tittabawassee or Saginaw Rivers and watershed in MI, USA were carried out. For a starting TEQ of 5000 ng per kg dry sediment (ppt), the model predicted a decrease in the overall TEQ to below 2000 ppt after 2.6 years and below 250 ppt after ∼21 years. The developed model may be used for extracting rates from microcosm studies and to evaluate the effect of engineering interventions on TEQ reduction.