Rhodamine-B (Rh-B) marking shows a great potential for use in mark-release-recapture (MRR) studies for rear-and-release mosquito control strategies, including the radiation-based sterile insect technique. However, its applicability and evaluation in body-stain-irradiated males of Aedes aegypti have received little attention. The present study evaluated the use of Rh-B to mark gamma-irradiated male A. aegypti. Male A. aegypti were irradiated at the pupal stage at a dose of 70 Gy. After emergence, males were fed 0.1, 0.2, 0.3, or 0.4% Rh-B in 10% glucose solution for 4 days. Groups of unirradiated males that received the same feeding treatments were used as control groups. We evaluated the persistence of Rh-B and the longevity of males after Rh-B feeding. Furthermore, the use of Rh-B in irradiated A. aegypti for MRR experiments was evaluated at an urban site. No difference was observed in the Rh-B persistence among all concentrations at the 24-h postmarking period ranging from 91.25 ± 1.61% to 96.25 ± 1.61% and from 90.00 ± 2.28% to 93.13 ± 2.77% for the unirradiated and irradiated groups, respectively. Rh-B persistence significantly decreased over time, and persistence was significantly longer with increased concentrations in both the unirradiated and irradiated groups. Longevity was considerably decreased by Rh-B feeding and irradiation. However, no significant difference in longevity was found among males fed various concentrations of Rh-B. Through MRR experiments, irradiated-Rh-B marked males were mostly detected within a radius of 20 m and 40 m from the center-release point. The mean distance traveled of the released males from the three MRR events was calculated to be 42.6 m. This study confirms that Rh-B body marking through sugar feeding is applicable for irradiated male A. aegypti, with only a slight effect on longevity. Furthermore, considering the significant reduction in persistence over time, further study is needed to assess the impact of this reduction on the calculation of field biological parameters resulting from MRR experiments.
Read full abstract