This study innovatively combines a set of methods to assess the economic potential of pumped hydro energy storage. It first provides a method based on geographic information systems to study the potential of pumped-hydro for different topologies. Second, using cost estimates for each identified site, cost-potential curves are derived. Finally, these curves are used for planning a fully renewable system to assess their impact on investment recommendations. Applications to Chile, Peru, and Bolivia show the usability of the methods. Over 450 pumped-hydro locations are identified, totaling around 20 TWh (or 1600 GW of installed capacity with 12 h of storage). These numbers exceed by 20-fold the projected daily energy demand of the corresponding countries. When taking into account investment costs, most locations are cheaper than current Li-ion batteries, but only some are expected to remain competitive in the future. When using the resulting cost-potential curves to design a future energy system, the planning tool recommends about 1.6 and 5.0 times more pumped-hydro storage compared to using average values and literature values, respectively. These differences underline the significance of the found cost curves.
Read full abstract