Time-varying optical metasurfaces have attracted significant research attention for their ability to dynamically modulate the spectral characteristics of light and achieve effects not possible in static systems. Nonlocal metasurfaces, with their spatially extended resonant modes, have the potential to further expand these capabilities by enabling spatially selective modulation. Here, we experimentally explore the application of spatially structured femtosecond laser pumping to modulate a leaky guided mode in a semiconductor metasurface. Using angle-resolved transient transmission spectroscopy, we study the dynamic response of the system across a range of wavelengths and angles of incidence, observing frequency and momentum conversion. When the pumping location is varied, this technique allows for reconstructing the temporal dynamics of the probe pulse propagating in the metasurface mode. Our results not only demonstrate a versatile toolkit for spatiotemporal light control but also provide fundamental insight into the excitation of spatially extended modes in nonlocal metasurfaces.
Read full abstract