A novel process has been developed to toughen phenolic resin by polyurethane for fiber-reinforced pultruded composites. The mechanical properties of the composites (tensile strength, flexural strength, and notched Izod impact strength) approach maximum values at 10 wt% of the blocked polyurethane content. The fabricated composites show good mechanical properties and possess low void fraction. Notched Izod impact strength of the composite (with 5 wt% polyurethane content) increases by more than 30% compared to the virgin composite. The thermogravimetric analysis (TGA) showed that the temperature for the 5% weight loss of the phenolic/polyurethane copolymer decreases with the increasing of the polyurethane content; however, the thermal degradation temperature is still higher than 350°C. Differential scanning calorimetric analysis (DSC) showed that the onset point of copolymer is 20°C higher than that of the virgin one. The presence of the blocked polyurethane may hinder the polymerization of phenolic resin. The modified composite shows excellent dimensional stability. The copolymer composite also possesses good fire resistance. © 1996 John Wiley & Sons, Inc.
Read full abstract