Common tendon injuries impair healing, leading to debilitation and an increased re-rupture risk. The impact of oxygen-sensing pathways on repair mechanisms, vital in regulating inflammation and fibrosis, remains unclear despite their relevance in tendon pathologies. Recent studies show that pulsed electromagnetic field (PEMF) reduce inflammation in human tendon cells (hTDCs) and in hypoxia-induced inflammation. We investigated the hypoxia's impact (1% and 2% oxygen tension) using magnetic cell sheet constructs (IL-1β-magCSs) primed with IL-1β. IL-1β-magCSs were exposed to low OT (1h, 4h,6h) in a hypoxic chamber. To confirm the role of PEMF (5Hz, 4mT, 50% duty cycle) on hypoxia modulation, IL-1β-magCSs, previously exposed to OT, were 1h-stimulated with PEMF. Our results show a significant increase in HIF- 1a and HIF-2a expression on IL-1β-magCSs after exposure to 2%-OT at all time points, compared to 1%- OT and normoxia. TNFa, IL-6, and IL-8 expression increased after 6 hours of 1%-OT exposure. PEMF stimulation of hypoxic IL-1β-magCSs led to decreased pro-inflammatory genes and increased anti-inflammatory (IL-4,IL-10) expression compared to unstimulated magCSs. IFN-g, TNF-α, and IL-6 release increased after 6 hours, regardless of %-OT, while IL-10 levels tended to rise after PEMF stimulation at 2%-OT. Also, NFkB expression was increased on IL-1β-magCSs exposed to 4 h and 6 h of 2%-OT, suggesting a link between NFkB and the production of pro-inflammatory factors. Moreover, PEMF stimulation showed a significantly decreased NFkB level in IL-1β-magCSs.Overall, low OT enhances expression of hypoxia-associated genes and inflammatory markers in IL-1β-magCSs with the involvement of NFkB. PEMF modulates the response of magCSs, previously conditioned to hypoxia and to inflammatory triggers, favouring expression of anti-inflammatory genes and proteins, supporting PEMF impact in pro-regenerative tendon strategies.Acknowledgements: ERC CoG MagTendon(No.772817), FCT under the Scientific Employment Stimulus-2020.01157.CEECIND. Thanks to Hospital da Prelada for providing tendon tissue samples (Portugal), and TERMRES Hub (Norte-01-0145-FEDER-022190).