Abstract
Pulsed electromagnetic field (PEMF) stimulation enhances the efficacy of several anticancer drugs. Doxorubicin is an anticancer drug used to treat various types of cancer, including breast cancer. However, the effect of PEMF stimulation on the efficacy of doxorubicin and the underlying mechanisms remain unclear. Thus, this study aimed to investigate the effect of PEMF stimulation on the anticancer activity of doxorubicin in MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were seeded and allowed to incubate for 48 h. The cells were treated with doxorubicin, cisplatin, 5-fluorouracil, or paclitaxel for 48 h. Subsequently, the cells were stimulated with a 60-min PEMF session thrice a day (with an interval of 4 h between each session) for 24 or 48 h. Cell viability was assessed by trypan blue dye exclusion assay and cell-cycle analysis was analyzed by flow cytometry. Molecular mechanisms involved in late G2 arrest were confirmed by a western blot assay and confocal microscopy. MDA-MB-231 cells treated with a combination of doxorubicin and PEMF had remarkably lower viability than those treated with doxorubicin alone. PEMF stimulation increased doxorubicin-induced cell-cycle arrest in the late G2 phase by suppressing cyclin-dependent kinase 1 (CDK1) activity through the enhancement of myelin transcription factor 1 (MYT1) expression, cell division cycle 25C (CDC25C) phosphorylation, and stratifin (14-3-3σ) expression. PEMF also increased doxorubicin-induced DNA damage by inhibiting DNA topoisomerase II alpha (TOP2A). These findings support the use of PEMF stimulation as an adjuvant to strengthen the antiproliferative effect of doxorubicin on breast cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.