Two-dimensional (2D) NbSe2 is a new material with a variety of excellent properties. In this article, 2D NbSe2 nanosheets are prepared using liquid phase exfoliation (LPE) and spin coating methods. At the same time, the properties of NbSe2 were calculated by using density functional theory (DFT), exploring the changes in the electronic band structure of NbSe2 with the number of layers, and studying the optical properties of NbSe2. The nonlinear optical properties caused by the Pauli blocking effect and the absorption spectra are studied through typical nonlinear testing techniques and an ultraviolet–visible-near-infrared (UV–VIS-IR) spectrophotometer. In addition, 2 µm solid-state pulse lasers have important applications in a variety of fields. For the first time, 2D NbSe2 nanosheets are prepared as saturable absorbers (SA) and applied them to solid-state lasers as nonlinear optical modulation devices, successfully achieving the generation of ultra-short pulse lasers with a pulse duration of 445.4 ps in 2 µm band. Our research results prove that 2D NbSe2 nanosheets is a promising nanomaterial, can be prepared into nonlinear optical modulation devices with excellent performance, and show great application potential as ultrafast photonic devices. It is beneficial to the miniaturization of solid-state pulse lasers in subsequent applications.