Abstract
We have developed a direct conductive patterning method with micro-scale line widths using the laser-induced-forward transfer (LIFT) and liquid metal. As this method does not need post-thermal processing, there is no thermal damage even on heat-sensitive polymer substrates by low-power laser irradiation on the dynamic release layer (DRL). Unlike other liquid metal patterning processes, this procedure can easily achieve fine line widths of a few tens of micrometers corresponding to laser spot size. The solid-state UV pulse laser with 266 nm wavelength and 20 ns pulse duration was used to transfer Eutectic Gallium Indium (EGaIn) liquid metal and the results for the single and multi-pulse laser irradiation were investigated to determine the effective process conditions. The applicability of flexible circuit fabrication and selective circuit repair was successfully tested on Polyimide (PI) substrate. After the LIFT process, the electrical properties of liquid metal on the pattern were measured to be approximately 5~8 x 10SUP-3/SUP Ω/m of resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society for Precision Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.