Stainless steel core plates (SSCPs) show great potential for modular construction due to their superiority of excellent mechanical properties, light weight, and low cost over traditional concrete and honeycomb structures. During the brazing process of SSCP joints which connect the skin panel and core tubes, it is difficult to keep an even heat flow of inert gas in the vast furnace, which can lead to partially missing solder defects in brazing joints. Pulsed eddy current imaging (PECI) has demonstrated feasibility for detecting missing solder defects, but various factors including lift-off variation and image blurring can deteriorate the quality of C-scan images, resulting in inaccurate evaluation of the actual state of the brazed joints. In this study, a differential pulsed eddy current testing (PECT) probe is designed to reduce the lift-off noise of PECT signals, and a mask-based image segmentation and thinning method is proposed to eliminate the blurring effect of C-scan images. The structure of the designed probe was optimized based on finite element simulation and the positive peak of the PECT signal was selected as the signal feature. Experiments with the aid of a scanning device are then carried out to image the interrogated regions of the SSCP specimen. The peak values of the signals were collected in a matrix to generate images of the scanned brazing joints. Results show that lift-off noise is significantly reduced by using the differential probe. Image blurring caused by the convolution effect of the probe's point spread function with the imaging object was eliminated using a mask-based image segmentation and thinning method. The restored C-scan images enhance the sharpness of the profiles of the brazing joints and the opening in the images accurately reflect the missing solder of the brazed joints.
Read full abstract