As the proportion of renewable energy in energy use continues to increase, to solve the problem of line impedance mismatch leading to the difference in the state of charge (SOC) of each distributed energy storage unit (DESU) and the DC bus voltage drop, a distributed energy storage system control strategy considering the time-varying line impedance is proposed in this paper. By analyzing the fundamental frequency harmonic components of the pulse width modulation (PWM) signal carrier of the converter output voltage and output current, we can obtain the impedance information and, thus, compensate for the bus voltage drop. Then, a novel, droop-free cooperative controller is constructed to achieve SOC equalization, current sharing, and voltage regulation. Finally, the validity of the system is verified by a hardware-in-the-loop experimental platform.
Read full abstract