In this work, we studied the light-output properties, efficiency function, as well as the pulse-shape discrimination (PSD) capability of p-Terphenyl scintillator. The selected solid cylindrical scintillation detector has a thickness of 45 mm and a diameter of 45 mm. Recently presented studies of light-output functions have only been measured for low-neutron energies. Our motivation has been to determine the light output function for p-Terphenyl scintillator more accurately over a wider neutron energy range. The measurements have been carried out with mono-energetic neutron beams in the wide energy range from 1.1 to 19 MeV. The neutron–gamma spectrometric system which we developed has been used for the measurement. The input analog signal from the detector was digitized with a fast 12-bits analog to digital converter with a sampling frequency of 1 GHz. Measured data from the detector are processed into the gamma and neutron spectra. The accurate light output function for the p-Therphenyl scintillator has been calculated. The pulse-shape discrimination capability, as well as the detection efficiency, of a p-Terphenyl scintillator are lower in comparison with a NE-213 equivalent detector.
Read full abstract