One-electron transfer reactions involving nicotinamide-adenine dinucleotide in its oxidized and reducd forms (NAD./NADH) were studied by pulse radiolysis in aqueous solutions. One-electron oxidation of NADH by various phenoxyl radicals and phenothiazine cation radicals was found to take place with rate constants in the range of 10/sup 5/ to 10/sup 8/ M/sup -1/ s/sup -1/, depending on the redox potential of the oxidizing species. In all cases, NAD. is formed quantitatively with no indication for the existence of the protonated form (NADH/sup +/.). The spectrum of NAD., as well as the rates of oxidation of NADH by phenoxyl and by (chlorpromazine)/sup +/. were independent of pH between pH 4.5 and 13.5. Reaction of deuterated NADH indicated only a small kinetic isotope effect. All these findings point to an electron transfer mechanism. On the other hand, attempts to observe the reverse electron transfer, i.e., one-electron reduction of NAD. to NADH by radicals such as semiquinones, showed that k was less than 10/sup 4/ to 10/sup 5/ M/sup -1/ s/sup -1/, so that it was unobservable. Consequently, it was not possible to achieve equilibrium conditions which would have permitted the direct measurement of the redox potential for NAD./NADH. One-electron reduction of NAD. appearsmore » to be an unlikely process. 1 table.« less