In clinical practice, the anatomical classification of pulmonary veins plays a crucial role in the preoperative assessment of atrial fibrillation radiofrequency ablation surgery. Accurate classification of pulmonary vein anatomy assists physicians in selecting appropriate mapping electrodes and avoids causing pulmonary arterial hypertension. Due to the diverse and subtly different anatomical classifications of pulmonary veins, as well as the imbalance in data distribution, deep learning models often exhibit poor expression capability in extracting deep features, leading to misjudgments and affecting classification accuracy. Therefore, in order to solve the problem of unbalanced classification of left atrial pulmonary veins, this paper proposes a network integrating multi-scale feature-enhanced attention and dual-feature extraction classifiers, called DECNet. The multi-scale feature-enhanced attention utilizes multi-scale information to guide the reinforcement of deep features, generating channel weights and spatial weights to enhance the expression capability of deep features. The dual-feature extraction classifier assigns a fixed number of channels to each category, equally evaluating all categories, thus alleviating the learning bias and overfitting caused by data imbalance. By combining the two, the expression capability of deep features is strengthened, achieving accurate classification of left atrial pulmonary vein morphology and providing support for subsequent clinical treatment. The proposed method is evaluated on datasets provided by the People's Hospital of Liaoning Province and the publicly available DermaMNIST dataset, achieving average accuracies of 78.81% and 83.44%, respectively, demonstrating the effectiveness of the proposed approach.
Read full abstract