Pulmonary fibrosis leads to increased mortality but is poorly understood. Fibrotic progression is associated with abnormal wound repair and an increase in myofibroblast cell populations. Here we investigate how the myofibroblast population is impacted by unique compression-induced apoptosis derived from mechanical strain characteristic of asthma. Using a mechanical device, both static and dynamic mechanical strains were applied to alginate/gelatin/CaCl2 scaffolds containing fibroblasts and myofibroblasts. As cell groups were stimulated with 30 % static strain for 12 h, fibroblast and myofibroblast cell groups showed increased cell apoptosis by 5.55 % and 19.56 %, respectively, compared to control groups. Additionally, myofibroblasts exhibited higher susceptibility to apoptosis induction than did fibroblasts. Comparing dynamic and static loading modes, dynamic loading resulted in a higher apoptosis rate of fibroblast and myofibroblast cells, indicating its potential to induce apoptosis effectively. These findings suggest that mechanical stimulation can be considered a promising approach to induce apoptosis in myofibroblasts, thus offering the potential for future approaches to treating pulmonary fibrosis. Moreover, mechanical loads can be designed for other diseases, selectively reducing or increasing apoptosis in either hard or soft cell groups, based on specific application needs.