BackgroundHepatic fibrosis is a pathological process in a variety of acute or chronic liver injuries. Catalpol (CAT), an iridoid glycoside found in Rehmannia glutinosa, has several pharmacological properties, including anti-inflammatory, antidiabetic and anti-fibrotic effects. Nevertheless, there is currently no report on whether CAT regulates the aerobic glycolysis of hepatic stellate cells (HSCs) to inhibit liver fibrosis. ObjectiveThis study aimed to investigate the protective effects of CAT on hepatic fibrosis and elucidate its underlying mechanisms. MethodsTo explore whether CAT improved liver fibrosis in vivo and in vitro, hepatic fibrosis was induced to mice by intraperitoneally injecting carbon tetrachloride (CCl4). Additionally, LX-2 cells were stimulated with transforming growth factor-β (TGF-β) to simulate fibrosis in vitro. Serum markers of liver injury were examined by using an automatic biochemical analyzer. Histopathological staining, Immunofluorescence (IF) staining, Western blot (WB) analysis, co-immunoprecipitation (Co-IP), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), etc. were employed to identify the targeting between CAT and EphA2 and detect the expression of aerobic glycolysis related proteins, fiber markers and signaling pathways that are responsible for CAT's anti-fibrotic effects of CAT. ResultsResults showed that CAT significantly inhibited hepatic injury, fibrogenesis and inflammation in mice treated with CCl4. This was demonstrated by the enhancement of fibrosis markers, liver function indices, and histopathology. In addition, CAT significantly inhibited the activation of HSCs in TGF-β-induced LX-2 cells, as indicated by decreased proliferation, migration, and expression of collagen I and a-SMA. The study results also suggested that CAT may exert anti-fibrotic effects by inhibiting glycolysis in activated HSCs and in CCl4-treated mice. Mechanistically, CAT directly targets Ephrin type-A receptor 2 (EphA2) to reduce binding with focal adhesion kinases (FAK) and significantly inhibits the FAK/Src pathway. In addition, the pharmacological inhibition of EphA2 cannot further increase the therapeutic effects of CAT on liver fibrosis in vivo and in vitro. ConclusionThe study findings generally demonstrated that CAT presented a novel therapeutic method to treat hepatic fibrosis; this method which inhibits the aerobic glycolysis of activated HSCs through the EphA2/FAK/Src signaling pathway.