The impact of three-dimensional (3D) dose delivery accuracy of C-arm linacs on the planning target volume (PTV) margin was evaluated for non-coplanar intracranial stereotactic radiosurgery (SRS). A multi-institutional 3D starshot test using beams from seven directions was conducted at 22 clinics using Varian and Elekta linacs with X-ray CT-based polymer gel dosimeters. Variability in dose delivery accuracy was observed, with the distance between the imaging isocenter and each beam exceeding 1 mm at one institution for Varian and nine institutions for Elekta. The calculated PTV margins for Varian and Elekta linacs that could cover the gross tumor volume with 95% probability at 95% of the institutions were 2.3 and 3.5 mm, respectively, in the superior–inferior direction. However, with multifactorial system management (i.e., high-accuracy 3D dose delivery with rigorous linac quality assurance, strict patient immobilization, and high intra-fractional positioning accuracy), these margins could be reduced to 1.0 mm and 1.5 mm, respectively. The findings indicate significant millimeter-level variability in 3D dose delivery accuracy among linacs installed in clinical settings. Thus, maximizing a linac’s 3D dose delivery accuracy is essential to achieve the required PTV margin in intracranial SRS.
Read full abstract