To investigate the mechanism mediating the regulatory effect of lncRNA MAGI2-AS3 on cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). MAGI2-AS3 and miR-1269a expression levels were detected by qRT-PCR in DDP-sensitive lung cancer cell lines (A549 and H1299) and their resistant counterparts (A549/DDP and H1299/DDP). In A549 and H1299 cells with MAGI2-AS3 silencing and A549/DDP and H1299/DDP cells overexpressing MAGI2-AS3, the effects of 20 μmol/L DDP on cell viability and apoptosis were examined with CCK-8 assay, colony formation assay, flow cytometry and Western blotting, and the changes in epithelial-mesenchymal transition (EMT) were assessed with wound healing and Transwell assays. The interaction between MAGI2-AS3, miR-1269a and PTEN was predicted using GEPIA, StarBase and miRDB and verified with luciferase reporter gene assay and radioimmunoprecipitation (RIP) assay. A miR-1269a mimic and pcDNA3.1-PTEN plasmid were used to perform the rescue assay. MAGI2-AS3 expression was significantly downregulated in lung cancer tissues (P < 0.05) in association with a poor prognosis (P < 0.05). In the two DDP-resistant lung cancer cell lines, MAGI2-AS3 expression was significantly lowered as compared with the sensitive cells. Silencing MAGI2-AS3 significantly enhanced cell viability and promoted EMT of A549 and H1299 cells irrespective of DDP treatment, and also decreased DDP-induced apoptosis of the cells. In A549/DDP and H1299/DDP cells, MAGI2-AS3 overexpression strongly repressed cell viability and EMT irrespective of DDP treatment and promoted DDP-induced cell apoptosis. Luciferase reporter gene and RIP assays confirmed the binding of MAGI2-AS3 with miR-1269a and the binding of miR-1269a with 3 '-UTR domain of PTEN. The rescue assay demonstrated that MAGI2-AS3 acted as a sponge for miR-1269a to promote PTEN expression and downregulate AKT phosphorylation, thus inhibiting EMT and promoting DDP-induced apoptosis of A549/DDP cells. MAGI2-AS3 enhances DDP sensitivity of NSCLC by targeted regulation of the miR-1269a/PTEN/AKT signaling axis.
Read full abstract