Abstract

Transforming growth factor β (TGFβ) causes the acquisition of epithelial-mesenchymal transition (EMT). Although the tumor suppressor gene PTEN (phosphatase and tensin homologue deleted from chromosome 10) can negatively regulate many signaling pathways activated by TGFβ, hyperactivation of these signaling pathways is observed in lung cancer cells. We recently showed that PTEN might be subject to TGFβ-induced phosphorylation of its C-terminus, resulting in a loss of its enzyme activities; PTEN with an unphosphorylated C-terminus (PTEN4A), but not PTEN wild, inhibits TGFβ-induced EMT. Nevertheless, whether or not the blockade of TGFβ-induced EMT by the PTEN phosphatase activity might be attributed to the unphosphorylated PTEN C-terminus itself has not been fully determined. Furthermore, the lipid phosphatase activity of PTEN is well characterized, whereas the protein phosphatase activity has not been determined. By using lung cancer cells carrying PTEN domain deletions or point mutants, we investigated the role of PTEN protein phosphatase activities on TGFβ-induced EMT in lung cancer cells. The unphosphorylated PTEN C-terminus might not directly retain the phosphatase activities and repress TGFβ-induced EMT; the modification that keeps the PTEN C-terminus not phosphorylated might enable PTEN to retain the phosphatase activity. PTEN4A with G129E mutation, which lacks lipid phosphatase activity but retains protein phosphatase activity, repressed TGFβ-induced EMT. Furthermore, the protein phosphatase activity of PTEN4A depended on an essential association between the C2 and phosphatase domains. These data suggest that the protein phosphatase activity of PTEN with an unphosphorylated C-terminus might be a therapeutic target to negatively regulate TGFβ-induced EMT in lung cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.