Abstract

In obesity and diabetes, the ability of hypothalamic neurons to sense and transduce changes in leptin and insulin levels is compromised. The effects of both hormones require intracellular signalling via the PI3-kinase pathway, which is inhibited by the phosphatase PTEN. We show that leptin-stimulated F-actin depolymerization in mouse hypothalamic cells is inhibited by PTEN, a process involving independent effects of both its lipid and protein phosphatase activities. Potentially mediating this F-actin depolymerization, leptin, but not insulin, stimulated the phosphorylation of PTEN in a CK2 dependent manner, and inhibited its phosphatase activity. Similarly, hyperpolarization of mouse pancreatic beta-cells by leptin also requires coincident PtdIns(3,4,5)P3 generation and actin depolymerization, and could be inhibited by mechanisms requiring both the lipid and protein phosphatase activities of PTEN. These results demonstrate a critical role for PTEN in leptin signalling and indicate a mechanism by which leptin and insulin can produce PI3K dependent differential cellular outputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.