Platinum (Pt) subnanoclusters have become pivotal in nanocatalysis, yet their molecular adsorption mechanisms, particularly on supported versus unsupported systems, remain poorly understood. Our study employs detailed density functional theory (DFT) calculations with D3 corrections to investigate molecular adsorption on Pt subnanoclusters, focusing on CO, NO, N2, and O2 species. Gas-phase and graphene-supported scenarios are systematically characterized to elucidate adsorption mechanisms and catalytic potential. Gas-phase Pt n clusters are first analyzed to identify stable configurations and assess size-dependent reactivity. Transitioning to graphene-supported Pt n clusters, both periodic and nonperiodic models are employed to study interactions with graphene substrates. Strong adsorbate interactions predominantly occur at single top sites, revealing distinct adsorption geometries and stabilization effects for specific molecules on Pt6 clusters. Energy decomposition analysis highlights the paramount role of graphene substrates in enhancing stability and modulating cluster-adsorbate interactions. The interaction energy emerges as a critical criterion within the Sabatier principle, crucial for distinguishing between physisorption and chemisorption. Hybridization indices and charge density flow tendencies establish direct relationships with stabilization processes, underscoring graphene's influence in stabilizing highly reactive subnanoclusters. This comprehensive investigation provides critical insights into molecular adsorption mechanisms and the catalytic potential of graphene-supported Pt nanoclusters. Our findings contribute to a deeper understanding of nanocatalysis, emphasizing the essential role of substrates in optimizing catalytic performance for industrial applications.
Read full abstract