For reducing the Pt usage and driving down the cost of fuel cells, it is urgent to develop alternative Pt-free catalysts with high catalytic performance. In this study, an Ir3Sn–CeO2/C heterogeneous catalyst is designed as low-price, alternative Pt-free electrocatalyst towards ethanol oxidation reaction (EOR) in acidic conditions. Owing to the strong synergistic effect among Ir, Sn and CeO2 components, Ir3Sn–CeO2/C heterogeneous catalyst exhibits higher catalytic activity and stability for EOR in comparison with commercial Pt/C, as-prepared Ir/C and Ir3Sn/C. Additionally, kinetics and mechanisms of EOR are also investigated. It proves that ethanol electrooxidation on Ir3Sn–CeO2/C catalyst is a diffusion controlled irreversible process. Meanwhile, the H2SO4 and ethanol concentrations can affect the EOR activity. All results demonstrate Ir3Sn–CeO2/C heterogeneous catalyst is a promising Pt-free choice for EOR.