The AP2/ERF TF (transcription factor) family is involved in regulating plant responses to various biotic and abiotic stresses. Nevertheless, understanding of the function of AP2/ERF TFs in wheat (Triticum aestivum L.) resistance against the obligate biotrophic stripe rust fungus (Puccinia striiformis f. sp tritici, Pst) remains limited. From a wheat–Pst incompatible interaction cDNA library, the transcript of TaAP2-10 was identified to be significantly induced during Pst infection. TaAP2-10, encodes an AP2 TF with two typical AP2-binding domains. There are three homologues of TaAP2-10 in the wheat genome, located on chromosome 6A, 6B and 6D. TaAP2-10 is localized in the nucleus of wheat protoplasts. A transactivation assay in yeast revealed that TaAP2-10 had transcriptional activation activity that was dependent on its C-terminal region. Quantitative real-time PCR (qRT-PCR) analyses verified that the expression of TaAP2-10 was specifically upregulated by avirulent Pst infection but not by virulent Pst, suggesting its role in wheat resistance to Pst. Furthermore, TaAP2-10 is also induced by abiotic stresses and hormone treatments, particularly under PEG4000 and abscisic acid (ABA) treatments, indicating its potential role in facilitating wheat adaptation to environmental stresses. Silencing TaAP2-10 by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) significantly reduced wheat resistance against Pst, resulting in a decreased reactive oxygen species (ROS) burst, and promoted Pst growth and development. These findings suggest that TaAP2-10, as a nuclear-localized transcription factor, positively regulates wheat resistance to Pst.
Read full abstract