Genetic relationships among 970 cucumber (Cucumis sativus L.) plant introductions (PIs) in the U.S. National Plant Germplasm System (NPGS) were assessed by observing variation at 15 isozyme loci. Allozyme frequency data for these PIs were compared to allozyme variation in heirloom and modern (H&M) cultivars released from 1846-1985 (H&M cultivars; 178 accessions), and experimental commercial (EC) germplasm (EC germplasm; 82 accessions) in use after 1985. Multivariate analysis defined four distinct groups of accessions (Groups A-D), where Group A consisted of PIs received by the NPGS before 1992, Group B contained PIs from India and China obtained by NPGS after 1992, Group C consisted of EC germplasm, and Group D contained H&M cultivars. Morphological, abiotic stress (water and heat stress tolerance) and disease resistance evaluation data from the Germplasm Resources Information Network (GRIN) for the PIs examined were used in conjunction with estimates of population variation and genetic distance estimates to construct test arrays and a core collection for cucumber. Disease resistance data included the evaluation of angular leafspot [Pseudomonas lachrymans (E.F. Smith) Holland], anthracnose [Colletotrichum lagenarium (Ross.) Ellis & Halst], downy mildew [Pseudoperonospora cubensis (Berk. & Curt) Rostow], rhizoctonia fruit rot (Rhizoctonia solani Kuhn), and target leafspot [Corynespora cassiicola (Berk. & Curt) Wei] pathogenicity. The test arrays for resistance-tolerance to angular leafspot, anthracnose, downy mildew, rhizoctonia fruit rot, target leafspot, and water and heat stress consisted of 17, 16, 17, 16, 17, 16, and 16 accessions, respectively. The core collection consisted of accessions in these test arrays (115) and additional 32 accessions that helped circumscribe the genetic diversity of the NPGS collection. The core collection of 147 accessions (115 + 32) represents ≈11% of the total collection's size (1352). Given estimates of genetic diversity and theoretical retention of diversity after sampling, this core collection could increase curatorial effectiveness and the efficiency of end-users as they attempt to identify potentially useful germplasm.
Read full abstract