The Internet of Things produces vast amounts of data that require specialized algorithms in order to secure them. Lightweight cryptography requires ciphers designed to work on resource-constrained devices like sensors and smart things. A new encryption scheme is introduced based on a blend of the best-performing algorithms, SIMECK and TEA. A selection of software-oriented Addition–Rotation–XOR (ARX) block ciphers are augmented with a dynamic substitution security layer. The performance is compared against other lightweight approaches. The US National Institute of Standards and Technology (NIST) SP800-22 Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications and the German AIS.31 of the Federal Office for Information Security (BSI) are used to validate the output of the proposed encryption scheme. The law of iterated logarithm (LIL) for randomness is verified in all three forms. The total variance (TV), the Hellinger Distance (HD), and the root-mean-square deviation (RMSD) show values smaller than the required limit for 10.000 sequences of ciphertext. The performance evaluation is analyzed on a Raspberry PICO 2040. Several security metrics are compared against other ciphers, like χ2 and encryption quality (EQ). The results show that SIMECK-T is a powerful and fast, software-oriented, lightweight cryptography solution.
Read full abstract