This study employed the Life Cycle Assessment (LCA) method to evaluate the greenhouse gas (GHG) emissions of passenger vehicles across 31 provinces in China. It examined the potential of Battery Electric Vehicles (BEVs), Hybrid Electric Vehicles (HEVs), and Plug-in Hybrid Electric Vehicles (PHEVs) in significantly reducing emissions compared to Internal Combustion Engine Vehicles (ICEVs). The findings revealed that HEVs, PHEVs, and BEVs substantially lower emissions under the national average electricity GHG emissions coefficient, with PHEVs being the most effective, reducing emissions by over 30%. However, disparities exist at the provincial level due to varying electricity structures, with BEVs not fully effective in reducing emissions in about ten provinces, including Liaoning. The study further categorized provinces into six groups using the K-means method to guide the promotion of different types of New Energy Vehicles (NEVs). Sensitivity analysis highlights the critical role of reducing electricity emission coefficients and adjusting PHEV's utility factor in achieving emission reductions. The study also notes that battery replacements in PHEVs and BEVs during their lifecycle could impede emission reduction in most provinces. To maximize the environmental benefits of NEVs, there is a need to move to a greener electricity mix. At the same time, strategies for promoting NEVs should vary for different provinces.
Read full abstract