Abstract Genocea’s ATLAS platform is an empirical bioassay that uses patient autologous immune cells to identify both true neoantigens and Inhibigens࣪ for inclusion in or exclusion from neoantigen-targeted vaccines and cell therapies, respectively. In ATLAS, patient-derived antigen-presenting cells (APCs) are pulsed with E. coli expressing individual mutations identified from the patient mutanome ± listeriolysin O, enabling interrogation of both CD8+ and CD4+ T cell recognition. True neoantigens induce T cell activation and cytokine release, while Inhibigens lead to a downregulation of T cell responses and thus can promote tumor growth. Previous ATLAS screening of CD8+ T cells from mice carrying B16F10 mouse melanoma tumors identified both neoantigens and Inhibigens. Upon therapeutic vaccination, adjuvanted neoantigens generated immunogenicity and anti-tumor efficacy1. In contrast, therapeutic vaccination with multiple ATLAS-identified Inhibigens, alone or in combination with an otherwise-protective vaccine, led to accelerated tumor growth, impaired T cell responses, and abrogated tumor immune infiltration. Our current study further explores the mechanism of Inhibigen-specific responses through adoptive transfer of vaccine-experienced T cells into tumor-bearing recipient mice, as well as through analysis of T cell gene expression. Additionally, in order to determine whether Inhibigen identification and treatment translates into pro-tumor effects universally across tumor models, we performed ATLAS screening on CD4+ and CD8+ T cells isolated from mice bearing orthotopic KPC pancreatic cancer. Out of 73 total non-synonymous mutations, we successfully identified 14 CD4+ and 15 CD8+ true neoantigens, and 16 CD4+ and 18 CD8+ Inhibigens. This is the first known comprehensive characterization of endogenous antigens in this model. Therapeutic administration of neoantigens as adjuvanted peptide vaccines in KPC tumor-bearing mice led to smaller tumor sizes and reduced ascites volumes, whereas Inhibigen vaccination accelerated tumor growth. Mouse studies are ongoing and additional data will be presented. Taken together, our data from human cancer patients and two mouse cancer models support the importance of appropriate neoantigen selection and Inhibigen identification and exclusion from cancer therapies. Genocea’s GEN-011 neoantigen-targeted peripheral T cell (NPT) therapy candidate, designed using ATLAS-identified neoantigens and omitting Inhibigens, is being evaluated in an ongoing clinical trial (NCT04596033). Continued exploration of mechanisms of action of Inhibigen-specific responses may reveal new paradigms of cancer immune evasion. 1H Lam et al, Cancer Discov 2021;11:1-18 Citation Format: Hanna S. Starobinets, Victoria L. DeVault, Zoe C. Schmiechen, Ebony A. Miller, Eduardo Cruz, Meagan R. Rollins, Adam L. Burrack, Stephanie J. Rinaldi, Julie Arnold, Emily Tjon, Kyle Gonzalez, Dimitry Lineker, Hubert Lam, Ingunn M. Stromnes, Jessica B. Flechtner. ATLAS-identified Inhibigen-specific responses accelerate tumor growth in mouse melanoma and pancreatic cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2088.