Abstract A prototype equipment has been designed and built for the digital recording of well logs on magnetic tape at the same time that the regular film recording is made. The format of the digital tape produced is such that it can be used directly at the input of the IBM 704, 7090 or other models of IBM computers which accept digital magnetic tape. This apparatus has been used for the experimental field recording of dipmeter tape logs which were subsequently computed by means of an IBM 704 or 7090.In this paper the equipment and the digital tape are described briefly, and their application to the computer interpretation of dipmeter data is discussed. A principal element in the interpretation of the dipmeter log is the correlation of the three microresistivity dipmeter curves to determine the depth displacements between them. Several correlation methods for computer use are considered, with particular attention to their sensitivity to error and their consumption of computer time. The tape data were used to compute information content of the dipmeter microresistivity curves in terms of their frequency spectra. The results show that the sampling rate used in recording the digital information is quite adequate and illustrate a use of the digital tape in evaluating the characteristics of new tools. Some examples of field results are shown. It can be foreseen that, when digital tape recording becomes available for general field use, a whole new realm of possibilities will be opened up for the processing of other well logs through computations, which hitherto were not feasible because they were too laborious and time-consuming. Introduction The last few years have seen a revolution in the design and production of data-processing equipment. Stored-program digital computers have progressed from a research curiosity to the basis of a major industry. There are now hundreds of such machines in daily use in the United States. With the acceptance of a technique that was, in fact, already clearly described by John von Neumann in 1945, the last decade has seen great strides in the development of components, reliability, programming systems and, most spectacularly, in the sheer number of machines built and in use. In 1957 there were enough digital computers available to the oil industry to justify the suggestion that it would be worthwhile to investigate the possibility of using these machines in processing well log data. The first result of this investigation was the appearance of what may be referred to as the input-output bottleneck. Well logs are customarily recorded on film. To get these data into a machine required then (and still does): a time-consuming semi-automatic reading of the film; conversion of the log data to digital form; and recording these digital data in some medium acceptable for computer input, such as cards, magnetic tape, or punched paper tape. However, the recording, reading, and re-recording could only result in deterioration of the data. Therefore, it was concluded that the first step should be the development of a new, more direct recording technique supplemental to the film recording, which would provide easy access to the digital computer. There are many solutions to the problem of recording log data in an easily recoverable form. After careful consideration it was decided to adopt the boldest solution which, it was felt, was also the most elegant. It was decided to record well logs directly, in the field, on magnetic tape in such a way that this tape could be used without further modification as an input to the IBM 704 or 7090 computer. To realize practical field recording of magnetic tape logs, it became necessary to develop in a rather small package, an analog-to-digital converter, a tape recorder, and the necessary multiplexing and control circuits to allow the simultaneous recording of a multiplicity of logging signals. The magnetic tape recording was to be made simultaneously with the conventional logging operation in such a way as not to interfere with it. Along with the development of hardware, it was necessary to begin development of interpretation techniques and machine programs that would exploit the power of the digital computer. Here, again, there is a long list of possible applications. After much consideration it was decided to concentrate on the interpretation of the dipmeter log as a first application. It is the object of this paper to describe in some detail the developments sketched in the last three paragraphs. JPT P. 771^