Changes in the density of intramembrane particles (IMPs) of sensory nerve terminals in the bullfrog muscle spindle were correlated with recovery in the response of the spindle to stretch during postcrush reinnervation. A few IMPs on the protoplasmic (P) face in summer experiments (June to October) reappeared by the 3rd week after the nerve crush, then rapidly increased to 110% and 120% of control values 2 and 2.5 months after the crush. Afferent responses to stretch could be recorded after the mean IMP density on the P-face in terminal branches had recovered to more than 25% of the control value. The discharge rate showed a plateau pattern during the period of the excessive IMPs. This was supplanted by a normal pattern after a myelinated branch of the sensory axon was cut. The IMPs in winter experiments (November to April) reappeared by day 90 after nerve crush, and then slowly increased. The sustained responses to stretch reappeared after 5 months, when the mean IMP density on the P-face was restored to 25% or more of the control. Neither excessive density of the IMPs nor plateau pattern of the discharge rate were observed in winter experiments. The relation between the regenerated IMP densities and the functional recovery is discussed.
Read full abstract