Mitochondrial NADH:ubiquinone oxidoreductase (proton translocating respiratory complex I) serves several essential functions in cell metabolism: it maintains the intramitochondrial NADH/NAD+ ratio, contributes to generation of the proton-motive force, and participates in physiological and/or pathophysiological production of so-called reactive oxygen species. A characteristic feature of complex I is a slow, compared with its catalytic turnover, transformation to its inactive (deactivated) state, a phenomenon operationally called A/D transition. Here we report data on several extrinsic factors affecting deactivation as observed in coupled or uncoupled bovine heart submitochondrial particles. The time course of the strongly temperature-dependent deactivation deviates from first-order kinetics, and this deviation is abolished in the presence of an SH-group-specific reagent. The residual fraction of activity attained upon extensive deactivation shows the same kinetics of NADH oxidation as the fully active enzyme does. The rate of complex I deactivation is only slightly pH dependent within the range of 7.0–8.5 and significantly increases at higher pH. ATP∙(Mg) decreases the rate of complex I deactivation in coupled SMP, and this effect is abolished if the proton-motive force generating ATPase activity of Fo∙F1 is precluded. Taken together, the data show that an equilibrium between the A and D forms of complex I exists. Possible mechanistic aspects of the deactivation process are discussed.
Read full abstract