Magnetic resonance imaging (MRI) remains the gold standard for evaluating spinal cord tissue damage after spinal cord injury (SCI). Several MRI findings may have some prognostic potential, but their evolution over time, especially from the subacute to the chronic phase has not been studied extensively. We performed a prospective observational longitudinal study exploring the evolution of MRI parameters from the subacute to chronic phase after human traumatic cervical SCI. The study, conducted between 2016 and 2021, involved standardized neurological examinations and MRI scans 1 month, 3 months, and 1 year after SCI. The study cohort comprises 52 patients with cervical SCI. Patients were classified into AIS grades (American Spinal Injury Association Impairment Scale), and neurological recovery was assessed using the Integrated Neurological Change Score. The MRI protocol included various routine sequences, allowing the evaluation of established parameters such as intramedullary hemorrhage, lesion dimensions, maximum spinal cord compression, and various grading scales. The persistence of intramedullary hemorrhage one month after injury was associated with worse lower extremity motor scores and pinprick values after 3 months, and also in the chronic phase. In addition, dorsal column T2-weighted hyperintensities detected 3 months post-injury and in the chronic phase were related to lower pinprick sensory scores. The basic score and Sagittal Grade at 1 month were predictive for motor function 3 months after SCI and for neurological recovery between 1 and 3 months after injury. The study contributes valuable insights into the utility of routine MRI sequences for evaluating traumatic cervical SCI during the subacute to chronic phase. The identified MRI parameters and scores offer prognostic information and could support clinical decision-making.