Abstract

Anthropomorphic phantoms play an important role in routine clinical practice. They can be used to calibrate magnetic resonance imaging (MRI) scanners, control the diagnostic equipment quality, and reduce the acquisition time. The latter is especially critical for diagnosing fetal anomalies, which requires optimal image quality within the shortest possible time. This paper aims to develop an MRI fetal phantom and determine the materials that best mimic the magnetic resonance (MR) characteristics of its internal organs. Future phantom features will include simulations of fetal limb movements. A single MRI study of a pregnant woman at 20 weeks 3 days of gestation was used as a reference and for image segmentation. Anonymized Digital Imaging and Communication in Medicine (DICOM) files were imported into 3D Slicer v. 5.2.1 for segmentation of the uterus, fetus, and internal organs. Based on the performed segmentation, a three-dimensional model was obtained for printing on a 3D printer. The mold was 3D printed on an Anycubic Photon M3 Max printer. The paper showcases the selection and manufacturing of compositions to simulate the relaxation times of the fetal organs. Formulations for emulsions and carrageenan- and agar-based hydrogels are presented. The selected compositions were used to fill the 3D printed model. Statistical analysis showed no significant differences in absolute and relative signal values obtained from scans of a pregnant woman at 20 weeks and 3 days and a fetal phantom. During the study, an anthropomorphic fetal phantom was constructed, filled with compositions with relaxation times T1 and T2 similar to the control values of the corresponding tissues. The phantom can be used to set up and optimize fetal MRI protocols, train and educate medical students, residents, graduate students, and X-ray technicians, as well as to timely control image quality and equipment serviceability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.