Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with noncanonical receptors and unidentified coreceptors; however, the effects of which are less understood. Using high-throughput tandem mass tag (TMT) liquid chromatography tandem mass spectrometry (LC-MS/MS)-based proteomics and gene set enrichment analysis (GSEA), we identified both shared and unique intracellular pathways activated by Reelin through its canonical and noncanonical signaling in primary murine neurons of either sex during dendritic growth and arborization. We observed pathway cross talk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the noncanonical Reelin pathway including protein translation, mRNA metabolic process, and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin-binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for dendritic development.