The field of phylogenetics employs a variety of methods and techniques to study the evolution of life across the planet. Understanding evolutionary relationships is crucial to enriching our understanding of how genes and organisms have evolved throughout time and how they could possibly evolve in the future. Eucopia sculpticauda Faxon, 1893 is a deep-water peracarid in the order Lophogastrida Boas, 1883, which can often be found in high abundances in pelagic trawls. The species can be found along the Mariana Trench, in the Mid-Atlantic Ridge, west Atlantic and east Pacific Oceans, and in the Gulf of Mexico and as deep as 7526 m. Recent collections of E. sculpticauda in the Gulf of Mexico have revealed putative cryptic diversity within the species based on both molecular and morphological evidence. Previous studies have documented two different morphotypes of the telson: the terminal part of the pleon (abdomen) and part of the tail fan. In adults, the morphotypes can be distinguished by lateral constrictions in the telson. This evidence, combined with a previous barcoding study, led to the speculation that telson morphology may be a distinguishing character useful to define cryptic diversity within E. sculpticauda. This study presents additional molecular data from the mitochondrial genes cytochrome c oxidase subunit I, and the large ribosomal subunit (16S), and the nuclear histone 3 gene (H3) to investigate telson morphotypes in relation to evolutionary history within this species. Molecular data identified two strongly supported clades, lending support for potential cryptic diversification within the Gulf of Mexico. Investigations into telson morphology suggest that this character may be informative, but the morphotypes were sometimes ambiguous and additional characters could not be found that discriminate clades. At present, our data suggest early evidence for cryptic diversification within Gulf of Mexico populations, but additional morphological characters and geographic sampling are needed before a new species can be described.