Abstract SCI-15Exposure to pro-oxidants and defects in repair of oxidative base damage is associated with disease and aging and also contributes to the development of anemia, bone marrow failure and hematopoietic malignancies. Our work examines the role of the RB tumor suppressor pathway in the response of the hematopoietic system to oxidative stress and DNA damage. Evidence from mouse models has identified a role for the Rb protein (pRb) in the regulation of hematopoiesis through cell intrinsic functions in blood cell types but also through effects on the bone marrow microenvironment (Spike et al, 2004; Walkley et al, 2007; Daria et al, 2008). Such models have also demonstrated that pRb is required under stress conditions but not under conditions of steady state hematopoiesis (Spike et al, 2004; Spike et al, 2007; Daria et al, 2008). In particular, pRb was required to modulate the response of the hematopoietic system to replicative stress and hypoxia (Spike et al, 2007; Daria et al, 2008). To explain the mechanisms underlying these unique properties of pRb in hematopoiesis, we hypothesized that pRb protein levels are regulated by oxidative stress, including hypoxia and ROS generated as a consequence of stem cell location in the bone marrow niche or in response to replicative stress induced by agents such as 5-fluorouracil. Notably, hypoxia within the bone marrow niche has been reported to promote stem cell expansion and we postulated that this may be due to reduced pRb protein levels in response to hypoxia. We present evidence that pRb protein levels are regulated in wild-type bone marrow in response to replicative stress and that this in turn modulates expansion of stem cells and myeloid progenitors and also impacts end-stage differentiation in the erythroid lineage. Acetylation of pRb stabilized the protein in an active conformation while de-acetylation de-stabilized the protein and promoted pRb protein turnover and increased progenitor cell proliferation. We will present on-going studies that examine how hypoxia and/or ROS affects hematopoietic stem cell proliferation, self-renewal and differentiation in vivo as a function of pRb protein levels using conditional mouse models. The significance of our findings for bone marrow failure in human patients will be discussed. References Spike, B.T. et al. The Rb tumor suppressor is required for stress erythropoiesis. The EMBO J. 2004: 23, 4319-29. Spike, B.T., Dibling, B.C. & Macleod, K.F. Hypoxic stress underlies defects in erythroblast island formation in the Rb null mouse. Blood 2007; 110, 2173-81. Walkley, C.R., Shea, J.M., Sims, N.A., Purton, L.E. & Orkin, S.H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 2007; 129, 1081-95. Daria, D. et al. The retinoblastoma tumor suppressor is a critical intrinsic regulator for hematopoietic stem and progenitor cells under stress. Blood 2008; 111, 1894-902. Funding: The author is grateful to the J.P. McCarthy Foundation, the Aplastic Anemia and MDS International Foundation and the National Heart Lung & Blood Institute (RO1 HL080262) for funding of work in her laboratory relating to oxidative stress, erythropoiesis and hematopoietic diseases. DisclosuresNo relevant conflicts of interest to declare.
Read full abstract