In this study, free radicals generated by ultrasound were used to prepare conjugates of food proteins (soybean protein isolates, sodium caseinate and gelatin) with epigallocatechin gallate (EGCG). The changes in free amino and sulfhydryl group contents were used to confirm the occurrence of conjugation. The formation of covalent interactions on surface hydrophobicity, functional groups, structures, thermal stability, and gelation behavior of three proteins were investigated. The results showed that conjugation led to decrease in free amino and sulfhydryl group contents, reduction in the intensity of amide A and fluorescence intensity, and increase in β-fold content. The conjugation also resulted in a decrease in surface hydrophobicity and thermal stability of soybean protein isolates and sodium caseinate, but an increase in the surface hydrophobicity and thermal stability of gelatin. Furthermore, the covalent bonding between proteins and EGCG improved gel strength, water holding capacity, and resulted in a denser and more compact microstructure.