The hydrolysis of polysorbate surfactants in large molecule drug product formulations caused by residual host cell proteins presents numerous stability concerns for pharmaceuticals. The fatty acids (FA) released by polysorbate hydrolysis can nucleate into particulates or challenge the conformational stability of the proteinaceous active pharmaceutical ingredient (API). The loss of intact polysorbate may also leave the Drug Product (DP) vulnerable to interfacial stresses. Polysorbate 20 and 80 are available in several different quality grades (Multi-compendial, Super Refined, Pure Lauric Acid (PLA)/Pure Oleic Acid (POA)). All variations of polysorbate as well as three alternative surfactants: Brij L23, Brij O20 and Poloxamer 188 were compared for their ability to protect against air-water interfacial stresses as well as their risk for developing particulates when in the presence of lipoprotein lipase (LPL) (Pseudomonas).Results show a meaningful difference in the timing and morphology of FA particle formation depending on the type of polysorbate used. All grades of polysorbate, while susceptible to hydrolysis, still offered sufficient protection to interfacial stresses, even when hydrolyzed to concentrations as low as 0.005 % (w/v). Alternative surfactants that lack an ester bond were resistant to lipase degradation and showed good protection against shaking stress.
Read full abstract