In this study, we conducted a 16-week feeding trial to investigate the effects of a high-cassava starch diet on growth performance, liver function, and metabolism in largemouth bass (Micropterus salmoides). We formulated five diets containing varying levels of cassava starch: 12%, 9%, 6%, 3%, and 0% (termed M12, M9, M6, M3, and M0, respectively). We distributed these diets among largemouth bass with the initial body weight of 83.33 ± 0.55 g via an in-pond “raceway” aquaculture system. Our findings suggest that high level (12%) of cassava starch dietary inclusion adversely affected growth performance metrics such as weight gain rate and specific growth rate, along with feed utilization efficiency indicators, including protein efficiency, protein deposition rate, and the apparent digestibility of dry matter and protein. This negative impact was accompanied by a decrease in intestinal amylase activity. Through further transcriptomic analysis, we identified several key genes associated with carbohydrate metabolism, which underwent changes influencing liver function. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the involvement of these differentially expressed genes (DEGs) in the tricarboxylic acid cycle (TCA cycle). Comparative metabolomics analysis further indicated that the M9 group showed significant enrichment in pathways related to amino acid metabolism and alterations in the levels of metabolites involved in carbohydrate metabolism. In conclusion, our study demonstrates that incorporating up to 9% cassava starch in the diet can enhance growth performance in largemouth bass by stimulating digestive enzyme activities and promoting glucose utilization.