To address the limitations of current DC residual current protection methods, which primarily rely on the amplitude of DC residual current for fault detection and fail to safeguard against electric shocks at two points on the same side in DC Isolated Terra (IT) System systems, this paper introduces a novel protection method based on DC electric shock features. This paper first analyzes the sliding curvature accumulation and peak rise time features of DC basic residual current, load mutation current, and animal body electric shock current under multi-factor conditions. The analysis shows that sliding curvature accumulation in the range of 0.1 ≤ K ≤ 1 and a peak rise time of Δt ≥ 20 ms can effectively distinguish animal body electric shock. Then, based on this electric shock’s distinctive characteristics, an approach for identifying types of electric shock is developed. Finally, a DC residual current protective device (DC-RCD) is designed. The prototype test results demonstrate that the DC-RCD has an action time of ts < 70 ms. The proposed method accurately provides protection against electric shocks and effectively addresses the issue of inadequate protection when two fault points occur on the same side within an IT system. This approach holds significant reference value for the development of next-generation DC-RCDs.
Read full abstract