Pseudokinase TRIB2, a member of the CAMK Ser/Thr protein kinase family, regulates various cellular processes through phosphorylation-independent mechanisms. Dysregulation of TRIB2 has been implicated in promoting tumor growth, metastasis, and therapy resistance, making it a promising target for cancer treatment. In this study, we designed and synthesized a series of TRIB2 PROTAC degraders by conjugating a TRIB2 binder 1 with VHL or CRBN ligands via linkers of varying lengths and compositions. Among these compounds, 5k demonstrated potent TRIB2 degradation with a DC50 value of 16.84 nM (95 % CI: 13.66–20.64 nM) in prostate cancer PC3 cells. Mechanistic studies revealed that 5k directly interacted with TRIB2, selectively inducing its degradation through a CRBN-dependent ubiquitin-proteasomal pathway. Moreover, 5k outperformed the TRIB2 binder alone in inhibiting cell proliferation and inducing apoptosis, confirming that TRIB2 protein degradation could be a promising therapeutic strategy for TRIB2-associated cancers. Additionally, compound 5k also serves as an effective tool for probing TRIB2 biology.
Read full abstract