Interleukin-13 (IL-13) receptor alpha2 (IL-13Ralpha2), a high-affinity IL-13 binding subunit and a tumor antigen, is amplified in a variety of human tumor cell lines and tumors in vivo. By cDNA microarray, we have shown that gene transfer of human and rat adrenomedullin (AM) up-regulates IL-13Ralpha2 in a human prostate tumor cell line. Here, we show that IL-13Ralpha2 mRNA and protein are also up-regulated in PC-3 prostate tumor cells by recombinant AM (rAM) and human synthetic AM peptide in a dose-dependent manner in vitro and in vivo in mouse prostate tumor model. The 8- to 10-fold up-regulation of IL-13Ralpha2 by rAM or AM peptide in prostate tumor cells in vitro and in vivo increased their sensitivity to IL-13PE cytotoxin consisting of IL-13 and a truncated form of Pseudomonas exotoxin. Immunodeficient mice with established prostate tumors transfected with AM or treated with AM peptide showed reduction in tumor size by intratumoral administration of IL-13PE in a dose-dependent manner. At the highest dose (three 100 mug/kg/d every alternate day), >70% reduction of tumor size was observed compared with controls (P <or= 0.01). These results indicate that two completely unrelated hormones (AM and IL-13) are closely related to each other and that we have identified a novel role of AM in sensitizing certain types of prostate tumors to IL-13R-directed therapeutic agent.
Read full abstract