Acyclic nucleosides containing a 3-fluoro-2-(phosphonomethoxy)propyl (FPMP) side chain are known to be moderately potent antihuman immunodeficiency virus (HIV) agents, while being completely devoid of antiviral activity against a wide range of DNA viruses. The derivatization of the phosphonic acid functionality of FPMPs with a diamyl aspartate phenoxyamidate group led to a novel generation of compounds that not only demonstrate drastically improved antiretroviral potency but also are characterized by an expanded spectrum of activity that also covers hepatitis B and herpes viruses. The best compound, the (S)-FPMPA amidate prodrug, exerts anti-HIV-1 activity in TZM-bl and peripheral blood mononuclear cells at low nanomolar concentrations and displays excellent potency against hepatitis B virus (HBV) and varicella-zoster virus (VZV). This prodrug is stable in acid and human plasma media, but it is efficiently processed in human liver microsomes with a half-life of 2 min. The (R) isomeric guanine derivative emerged as a selectively active anti-HIV and anti-HBV inhibitor, while being nontoxic to human hepatoblastoma cells. Notably, the pyrimidine containing prodrug (S)-Asp-FPMPC is the only congener within this series to demonstrate micromolar antihuman cytomegalovirus (HCMV) potency.
Read full abstract