Atrial Fibrillation (AF) is a common type of irregular heartbeat, and early detection can significantly improve treatment outcomes and prognoses. Single-lead Electrocardiogram (ECG) devices are under extensive scrutiny for monitoring patients' heart health worldwide. Standardized ECG signal monitoring has demonstrated a significant reduction in mortality rates associated with severe cardiovascular diseases. However, the automatic detection method for AF requires significant improvement. This study presents a novel approach that utilizes the cyclostationary analysis of ECG signals, uncovering a spectral hidden periodicity between the QRS-T (the main wave components representing electrical activity in the heart) complexes of the ECG signal through the Spectral Correlation Function (SCF). To validate the proposed method's performance, the single ECG's SCF coefficients are applied to the Convolutional Recurrent Neural Network (CRNN), which consists of convolutional and long short-term memory (LSTM) layers, on the 2017 PhysioNet challenge dataset. The obtained results demonstrate that the proposed approach efficiently represents ECG signals through SCF coefficients, leading to the accurate detection of AF with an average accuracy of 92.76% and an average F1-score of 89.1%.
Read full abstract