The identification of antioxidant proteins is a challenging yet meaningful task, as they can protect against the damage caused by some free radicals. In addition to time-consuming, laborious, and expensive experimental identification methods, efficient identification of antioxidant proteins through machine learning algorithms has become increasingly common. In recent years, researchers have proposed models for identifying antioxidant proteins; unfortunately, although the accuracy of models is already high, their sensitivity is too low, indicating the possibility of overfitting in the model. Therefore, we developed a new model called DP-AOP for the recognition of antioxidant proteins. We used the SMOTE algorithm to balance the dataset, selected Wei's proposed feature extraction algorithm to obtain 473 dimensional feature vectors, and based on the sorting function in MRMD, scored and ranked each feature to obtain a feature set with contribution values ranging from high to low. To effectively reduce the feature dimension, we combined the dynamic programming idea to make the local eight features the optimal subset. After obtaining the 36 dimensional feature vectors, we finally selected 17 features through experimental analysis. The SVM classification algorithm was used to implement the model through the libsvm tool. The model achieved satisfactory performance, with an accuracy rate of 91.076 %, SN of 96.4 %, SP of 85.8 %, MCC of 82.6 %, and F1 core of 91.5 %. Furthermore, we built a free web server to facilitate researchers' subsequent unfolding studies of antioxidant protein recognition. The website is http://112.124.26.17:8003/#/.
Read full abstract