Abstract
With the explosive growth of mobile devices, it is feasible to deploy image recognition applications on mobile devices to provide image recognition services. However, traditional mobile cloud computing architecture cannot meet the demands of real time response and high accuracy since users require to upload raw images to the remote central cloud servers. The emerging architecture, Mobile Edge Computing (MEC) deploys small scale servers at the edge of the network, which can provide computing and storage resources for image recognition applications. To this end, in this paper, we aim to use the MEC architecture to provide image recognition service. Moreover, in order to guarantee the real time response and high accuracy, we also provide a feature extraction algorithm to extract discriminative features from the raw image to improve the accuracy of the image recognition applications. In doing so, the response time can be further reduced and the accuracy can be improved. The experimental results show that the combination between MEC architecture and the proposed feature extraction algorithm not only can greatly reduce the response time, but also improve the accuracy of the image recognition applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.